Tag Archive for: Silvopasture

Silvopastoreo, alternativa para producir carne y leche bajas o neutras en carbono

El propósito del proyecto “Conformación de paisajes ganaderos productivos con baja huella de carbono y alto bienestar animal, orientados a la sostenibilidad del sector en Antioquia” es implementar paisajes ganaderos sostenibles para su reconversión productiva y ambiental, con estrategias de silvopastoreo.

Este comenzará con la puesta en marcha de dos clústeres ganaderos bovinos en las zonas del Urabá y Bajo Cauca, en cinco fincas por región –de entre 400 y 500 hectáreas– en los municipios de Arboletes, Necoclí, San Pedro de Urabá, Nechí, Cáceres y Caucasia, orientados a la reconversión ganadera sostenible, con baja huella de carbono y alto bienestar animal.

Además se realizará un monitoreo constante que sirva para caracterizar sus ciclos de vida y generar nichos de mercado futuros para la carne sostenible, a través del incremento del desempeño productivo del sector y la mitigación de sus aportes en gases efecto invernadero (GEI) al cambio climático.

SEGUIR LEYENDO EN VIRTUAL PRO

Cómo las mejores prácticas de agricultura y uso de la tierra orgánicas y regenerativas pueden revertir el calentamiento global

Resumen

  • Los suelos de la tierra, junto con los árboles y las plantas, son el mayor sumidero de carbono después de los océanos.
  • Las prácticas agrícolas orgánicas regenerativas secuestran CO2 y lo almacenan debajo y sobre el suelo en forma de materia orgánica. Los policultivos perennes, la agrosilvicultura y la reforestación pueden mantener y aumentar el carbono tanto por debajo como en la superficie del suelo.
  • La implementación a gran escala de un pequeño porcentaje (5-10%) de los sistemas orgánicos y regenerativos que incluyen las mejores prácticas dará como resultado que miles de millones de toneladas (Gt) de CO2 por año sean secuestradas en el suelo y en forma de biomasa aérea continua y perenne. La identificación, financiación y despliegue de las mejores prácticas en el 5-10% o más del total de tierras de cultivo (1,6 mil millones de hectáreas), pastizales (3,2 mil millones de hectáreas) y bosques (4 mil millones de hectáreas) del mundo será más que suficiente para capturar y eliminar todo el CO2 y los gases de efecto invernadero (43 Gt de CO2) que se emiten actualmente, sin agregar  más CO2 a la atmósfera ni a los océanos.
  • Cuando se libera dióxido de carbono CO2 a la atmósfera por la quema de combustibles fósiles o por prácticas agrícolas o de uso de la tierra destructivas (actualmente equivalen a 43 Gt de emisiones de CO2 por año), aproximadamente el 50% de estas 43 Gt de emisiones de CO2 permanecen en la atmósfera (21,5 Gt de CO2 al año), mientras que el 25% es absorbido por la tierra, las plantas y los árboles (10,75 Gt de CO2) y el 25% restante (10,75 Gt de CO2) es absorbido por el océano. Por lo tanto, debemos comenzar a reducir 32,25 Gt de CO2 (y eventualmente más) de las emisiones totales actuales (junto con la conversión a energía alternativa y la conservación de energía), para alcanzar emisiones netas cero (eliminar o cancelar todas las emisiones que van a la atmósfera y a los océanos). Necesitaremos una reducción neta de 32,75 Gt lo antes posible, ya que nuestros suelos y bosques ya están capturando 10,75 Gt de CO2. Una vez que dejemos de agregar  más CO2 a los océanos (y la atmósfera), y continuemos por el camino de la energía alternativa y la agricultura y el uso de la tierra regenerativos, los océanos, los suelos y la biota podrán extraer cantidades cada vez más significativas del legado (exceso) de carbono en la atmósfera, que, a su vez, comenzará a reducir el calentamiento global de manera constante.
  • Regeneration International, una red mundial de agricultura orgánica y regenerativa, con 354 organizaciones afiliadas en 69 países de África, Asia, América Latina, Oceanía, América del Norte y Europa, ha comenzado a ayudar a promocionar las mejores prácticas mundiales y a coordinar el despliegue, la financiación y la implementación a gran escala de estos sistemas.

Introducción

Casi nadie había oído hablar de la agricultura regenerativa antes de septiembre de 2014, cuando Regeneration International fue fundada por un pequeño grupo de líderes internacionales de los movimientos orgánicos, agroecológicos, de manejo holístico, medioambiental y de salud natural con el objetivo de cambiar la conversación mundial sobre el clima, la agricultura y uso de la tierra. Ahora, la agricultura regenerativa aparece en las noticias todos los días en todo el mundo.

El concepto de un movimiento de regeneración global coordinado se presentó inicialmente en la masiva Marcha del Cambio Climático en Nueva York, el 22 de septiembre de 2014, en una conferencia de prensa en la sede del Instituto Rodale. La conferencia de prensa reunió a una red global de agricultores, ganaderos, administradores de tierras, consumidores y activistas climáticos con ideas afines.

La primera Asamblea General de RI se celebró en Costa Rica en 2015 con participantes de todos los continentes. En cinco años, Regeneration International ha crecido y ya cuenta con 354 organizaciones afiliadas en 69 países de África, Asia, América Latina, Oceanía, América del Norte y Europa. RI y nuestros aliados hemos tenido éxito en la promoción del concepto de agricultura regenerativa como un sistema revolucionario para la restauración de ecosistemas y la captura de dióxido de carbono a una escala y un cronograma apropiados para nuestra actual emergencia climática.

¿Por qué la agricultura regenerativa?

La agricultura regenerativa se basa en una variedad de prácticas agrícolas, ganaderas y de uso de la tierra que utilizan la fotosíntesis de las plantas y los árboles para capturar CO2 y almacenarlo por debajo y en la superficie del suelo. La agricultura regenerativa se está utilizando ahora como un término genérico para los muchos sistemas agrícolas que utilizan técnicas como rotaciones más largas, cultivos de cobertura, abonos verdes, leguminosas, composta, fertilizantes orgánicos, manejo holístico del ganado y agrosilvicultura. Sin embargo, Regeneration International cree que la verdadera agricultura regenerativa debe ser tanto orgánica como regenerativa.

Otros términos que describen la agricultura regenerativa incluyen: agricultura orgánica, agrosilvicultura, agroecología, permacultura, pastoreo holístico, silvopastoreo, agricultura sintrópica, pasture cropping o método CCPP (cultivos de cereal sobre pastos permanentes) y otros sistemas agrícolas que pueden aumentar la materia orgánica / carbono del suelo. La materia orgánica del suelo es un indicador importante de la salud del suelo, ya que los suelos con niveles bajos no son saludables.

El suelo contiene casi tres veces la cantidad de carbono que la atmósfera y la biomasa (bosques y plantas) combinadas. La investigación a largo plazo muestra que el carbono del suelo puede ser estable durante más de 100 años, mientras que las prácticas forestales y agroforestales adecuadas pueden almacenar carbono en la superficie del suelo de forma continua.

La gestión del cambio climático es un tema importante que tenemos que abordar ahora

Los niveles de CO2 atmosférico han incrementado hasta llegar a 2 partes por millón (ppm) por año. El nivel de CO2 alcanzó un nuevo récord de 400 ppm en mayo de 2016. Sin embargo, a pesar de todos los compromisos asumidos por los países en París en diciembre de 2015, los niveles de CO2 aumentaron en 3,3 ppm en 2016 estableciendo un récord. Desde 2018 aumentó de nuevo en 3,3 ppm para establecer un nuevo récord de 415,3 ppm en mayo de 2019. A pesar del cierre económico mundial como respuesta a la pandemia de COVID-19, los niveles de CO2 aún establecieron un nuevo récord de 417,2 ppm en mayo de 2020. Este es un aumento masivo de emisiones por año desde el Acuerdo de París y muestra que en realidad la mayoría de los países ni siquiera están cerca de cumplir con sus compromisos de reducción de CO2 de París.

Revertir el cambio climático

417 ppm supera con creces el objetivo de París de limitar el aumento de la temperatura terrestre a 2 grados centígrados.

Para estabilizar los niveles de CO2 atmosférico, los sistemas agrícolas regenerativos deberán reducir el actual aumento de emisiones de 3,3 ppm de CO2 por año. El uso de la fórmula aceptada de que 1 ppm de CO2 = 7,76 Gt de CO2 significa que, como mínimo, es necesario extraer de la atmósfera 25,61 gigatoneladas (Gt) de CO2 por año. Pero en realidad necesitamos reducir 31,25 Gt de CO2 o más si queremos evitar que más CO2 caliente nuestros océanos ya recalentados y comenzar a reducir el legado de 417 ppm de CO2 alojado en la atmósfera.

El potencial de las “mejores prácticas” de la agricultura regenerativa

Existen numerosos sistemas agrícolas regenerativos que pueden secuestrar CO2 de la atmósfera mediante la fotosíntesis mejorada de las plantas y convertir este CO2 en materia orgánica del suelo a través de la actividad de las raíces y la biología del suelo: el microbioma del suelo. Otros pueden aumentar el almacenamiento de carbono sobre el suelo a través de prácticas forestales y agrosilvopastoriles / silvopastoriles regenerativas. No tenemos tiempo que perder en sistemas agrícolas o de uso de la tierra que solo capturan pequeñas cantidades de CO2. Necesitamos concentrarnos en escalar y expandir cualitativamente los sistemas que pueden lograr altos niveles de secuestro de carbono y restauración de ecosistemas, sistemas que sean apropiados y escalables para diferentes países, regiones, culturas y ecosistemas.

Los cálculos aproximados utilizados para los ejemplos a continuación son un buen ejercicio para mostrar el potencial de cambio a nivel mundial de estos sistemas regenerativos que incluyen las mejores prácticas para abordar la emergencia climática y comenzar a revertir el calentamiento global.

Sistema agroforestal de agave

El “proyecto mil millones de agaves” es una estrategia revolucionaria de regeneración de ecosistemas adoptada recientemente por un número creciente de granjas mexicanas innovadoras en la región desértica de Guanajuato, que ahora se extiende por todo México.

Este sistema agroforestal combina el cultivo denso (800 por acre / 2.000 por hectárea) de plantas de agave y especies de árboles fijadoras de nitrógeno (como el mezquite), con el pastoreo rotativo y holístico del ganado. El resultado es un sistema de alta biomasa y alto rendimiento de forraje que funciona bien incluso en tierras degradadas y semiáridas.

El sistema produce grandes cantidades de hojas y piñas de agave. Cuando se pica y se fermenta en recipientes cerrados, este material vegetal produce un ensilaje excelente y económico que sirve como forraje para animales.

Tener una gran cantidad de forraje animal fermentado a la mano reduce la presión para sobrepastorear los pastizales frágiles y mejora la salud del suelo, la retención de agua y la salud de los animales, al mismo tiempo que extrae y almacena cantidades masivas de CO2 atmosférico (270 toneladas de CO2 por hectárea almacenadas en la superficie del suelo de manera continua cada año después de 3-10 años.)

El sistema agroforestal de agave puede implementarse a gran escala en gran parte de las regiones áridas y semiáridas del mundo utilizando leguminosas y pastos nativos, y formar así sistemas agroforestales biodiversos altamente productivos que se basen en las especies nativas de cada región. El picado y la fermentación de las vainas de los árboles leguminosos, como el mezquite (que fijan nitrógeno y nutrientes en el suelo), agregadas al agave fermentado, producen un forraje para animales de alto contenido proteico superior a la alfalfa y a una fracción de su costo, todo sin la necesidad de irrigación o de productos químicos sintéticos.

Investigaciones recientes de Hudson Carbon muestran que este sistema agroforestal de agave puede secuestrar 270 toneladas de CO2 por hectárea (109 toneladas por acre) en la superficie del suelo por año de forma continua, sin contar el secuestro subterráneo ni la cantidad de carbono secuestrado por los árboles compañeros (494 por hectárea / 200 por acre).

Según la Convención de las Naciones Unidas de Lucha contra la Desertificación (UNCCD por sus siglas en inglés), aproximadamente el 40% de la tierra del mundo (4 mil millones de hectáreas / 10 mil millones de acres) son desiertos y tierras secas, principalmente en África, Asia y América Latina. Estas zonas sustentan a más de dos mil millones de personas y suministran alrededor del 60% de la producción mundial de alimentos. Si el sistema agroforestal de agave orgánico y regenerativo se implementara a nivel mundial en el 10% (400 millones de hectáreas) de estas 4 mil millones de hectáreas de tierras áridas y semiáridas, secuestraría 10,8 Gt de CO2 por año. Esto representa aproximadamente 1/3 de la cantidad de CO2 que se necesita capturar cada año para revertir el cambio climático.

El método BEAM

El método BEAM (Manejo Agrícola Biológicamente Mejorado), desarrollado por el Dr. David Johnson de la Universidad Estatal de Nuevo México, produce composta orgánica con una gran diversidad de microorganismos del suelo, especialmente material fúngico. Múltiples cultivos manejados con BEAM han logrado niveles muy altos de secuestro de CO2 y rendimiento. La investigación publicada por el Dr. Johnson y sus colegas muestra: “… un estudio de campo agrícola de 4,5 años promovió la captura y almacenamiento promedio anual de 10,27 toneladas métricas de C ha-1 año -1 del suelo al mismo tiempo que aumentó la disponibilidad de macro, meso y micronutrientes del suelo ofreciendo un mecanismo de secuestro de carbono robusto y rentable dentro de un enfoque de gestión agrícola sostenible más productiva y a largo plazo”. Estos resultados se están reproduciendo actualmente en otros ensayos.

Estas cifras significan que el método BEAM puede capturar 37.700 kilos (37,7 toneladas) de CO2 por hectárea por año, lo que equivale aproximadamente a 15,3 toneladas de CO2 por acre.

El método BEAM se puede utilizar en todos los sistemas de producción de alimentos basados ​​en el suelo, incluidos los cultivos anuales, los cultivos permanentes y los sistemas de pastoreo, y también en las regiones áridas y semiáridas. Si BEAM se implementara a nivel mundial en solo el 5% de todas las tierras agrícolas (2.500 millones de hectáreas o 12.000 millones de acres), secuestraría 9,18 Gt de CO2 por año.

El potencial del método “sin matar sin arar” orgánico biointensivo

La granja Singing Frogs es una granja hortícola orgánica y agroecológica que “no mata y no ara” altamente productiva con una rica biodiversidad en tres acres (1,2 ha). La clave de su sistema de cero labranza es cubrir las camas de cultivo con cobertura vegetal y composta en lugar de arar o usar herbicidas, plantar directamente en la composta, y una gran biodiversidad de cultivos comerciales y de cobertura que se rotan continuamente para eliminar las malezas, los ciclos de enfermedades y las plagas.

Según la Universidad Estatal de Chico, los niveles de materia orgánica del suelo (MOS) han aumentado en un 400% en seis años. Los Kaiser, fundadores y propietarios de la granja Singing Frogs, han aumentado su MOS del 2.4% a un óptimo 7-8% con un aumento promedio de aproximadamente 3/4 de punto porcentual por año. Este sistema agrícola es apto para más del 80% de los agricultores de todo el mundo, ya que la mayoría de ellos tienen menos de dos hectáreas o cinco acres. Si el modelo de la granja Singing Frogs se implementara globalmente a tierras de cultivos permanentes y arables, se capturarian 179 Gt de CO2 por año.

El potencial del pastoreo regenerativo

En la actualidad, existe un conjunto considerable de ciencia publicada y prácticas basadas en evidencia que muestran que los sistemas de pastoreo regenerativo pueden secuestrar más gases de efecto invernadero de los que emiten, lo que los convierte en una importante solución para revertir el cambio climático.

Además de secuestrar CO2, estos sistemas regeneran pasturas y pastizales degradados, mejoran la productividad, la capacidad de retención de agua y los niveles de carbono del suelo.

Alrededor del 68% de las tierras agrícolas del mundo se utilizan para el pastoreo. La evidencia publicada muestra que los pastizales administrados correctamente pueden acumular carbono en el suelo más rápido que muchos otros sistemas agrícolas y lo almacenan más profundamente en el suelo.

La investigación realizada por Machmuller et al. 2015: “En una región de extensa degradación del suelo en el sureste de los Estados Unidos, evaluamos la acumulación de C en el suelo durante 3 años en una cronosecuencia de 7 años de tres granjas convertidas al pastoreo manejado de forma intensiva. Aquí mostramos que estas granjas acumularon C en 8,0 Mg ha-1 año-1, aumentando el intercambio catiónico y la capacidad de retención de agua en un 95% y 34% respectivamente”.

Significa que han secuestrado 29.360 kilos de CO2 por hectárea al año. Esto es aproximadamente 29.000 libras de CO2 por acre. Si estas prácticas de pastoreo regenerativo se implementaran en el 10% de las tierras de pastoreo del mundo, secuestrarían 9,86 Gt de CO2 por año.

Método CCPP (cultivos de cereal sobre pastos permanentes)

El método CCPP o pasture cropping consiste en sembrar un cultivo comercial en un pastizal perenne en lugar de sobre un suelo desnudo. No es necesario arar las especies de pastos como las malezas o eliminarlas con herbicidas antes de plantar el cultivo comercial. El pasto perenne se convierte en cultivo de cobertura.

Este método fue desarrollado por primera vez por Colin Seis en Nueva Gales del Sur, Australia. El principio se basa en el sólido principio ecológico de que las plantas anuales crecen en sistemas perennes. La clave es adaptar este principio al sistema de gestión apropiado para los cultivos comerciales y el clima específicos.

Un excelente ejemplo del desarrollo del método CCPP y el método de 0 labranza “sin matar sin arar” es Soil Kee, una herramienta diseñada por Neils Olsen.

Primero, la cobertura del suelo / pastos se pasta o se cubre con mantillo para reducir la competencia de raíces y luz. Luego, Soil Kee rompe la masa de raíces, levanta y airea el suelo, cubre la cobertura del suelo / pastos en franjas estrechas y planta semillas, todo con una alteración mínima del suelo. Las semillas de los cultivos de cobertura / comerciales se plantan y simultáneamente se alimentan con un nutriente orgánico como el guano. Cuanto más rápido germina y crece la semilla, mayor es el rendimiento. Es fundamental proporcionar la biología y la nutrición a la semilla en el momento de la germinación y eliminar la competencia de las raíces.

El cultivo de pastos es excelente para aumentar la materia orgánica del suelo / el carbono del suelo. Neils Olsen fue pagado por secuestrar 11 toneladas de CO2 por hectárea por año, bajo el Programa de Agricultura de Carbono del gobierno australiano en 2019. En 2020, le pagaron por secuestrar 13 toneladas de CO2 por hectárea. Es el primer agricultor del mundo en ser pagado por secuestrar carbono en el suelo bajo un sistema regulado por el gobierno.

Si este sistema se implementara en el 10% de todas las tierras agrícolas, secuestraría 6,38 Gt de CO2 por año.

Reforestación global

Además de recargar y regenerar las tierras agrícolas, una parte importante de la regeneración de la Tierra y revertir el cambio climático será preservar, restaurar y expandir los 4 mil millones de hectáreas de bosques y humedales del mundo. Esta reforestación y forestación incluirá la plantación de hasta un billón de árboles en áreas deforestadas, así como varios cientos de miles de millones de árboles y plantas perennes en los 1,6 mil millones de hectáreas de tierras de cultivo (agrosilvicultura) y 3,2 mil millones de hectáreas de pasturas o pastizales (silvopastoreo) del mundo.

Se estima que la población mundial de árboles, que cubre el 30% de la superficie terrestre de la Tierra, es de tres billones de árboles, y se talan 15 mil millones de árboles cada año. Desde que los humanos comenzaron a cultivar, hace 10.000 años, aproximadamente la mitad de los árboles de la Tierra han sido talados y no replantados. Los bosques y humedales de la Tierra ahora secuestran más de 700 mil millones de toneladas de carbono y absorben, incluso teniendo en cuenta la deforestación masiva y los incendios forestales, unos adicionales 1,2 gigatoneladas de carbono neto. (White, Biosequestration and Biological Diversity, p.101) El poder de sumidero neto o de secuestro de carbono de los bosques de hoy asciende aproximadamente al 12% de todas las emisiones humanas actuales.

Si la “deforestación neta” (más árboles cortados, talados o quemados que la cantidad de árboles nuevos y saludables) pudiera detenerse en áreas boscosas, especialmente en áreas tropicales donde los árboles crecen más rápido y almacenan la mayor cantidad de carbono, y los bosques de todo el mundo se manejaran para aumentar la fotosíntesis y la biomasa a través de la reforestación masiva (y reduciendo los árboles por hectárea de las áreas boscosas favoreciendo que haya menos árboles pero más grandes y saludables por hectárea), los bosques del mundo podrían secuestrar cuatro mil millones de toneladas o más de carbono atmosférico al año, un 40% de todas las emisiones humanas actuales. Junto con la energía renovable y el cultivo de carbono, si detenemos la deforestación y reforestamos la Tierra con un billón de árboles apropiados para cada especie, y luego mantenemos estos árboles, podemos literalmente revertir el calentamiento global.

El Proyecto Ambiental de las Naciones Unidas (PNUMA) ha anunciado ahora un nuevo objetivo para la reforestación mundial y el secuestro de carbono llamado “Campaña 1 billón de árboles“. La ONU señala que hay suficiente espacio deforestado o vacío en áreas rurales y urbanas para plantar mil millones de árboles en el planeta, de los cuales se espera que sobrevivan 600 mil millones de árboles maduros. Y esta campaña de plantación de un billón de árboles no incluye los más de 100 mil millones de árboles adicionales que podrían y deberían plantarse en las 4,8 mil millones de hectáreas de tierras de cultivo y pastos de la Tierra utilizando las técnicas  de agrosilvicultura y silvopastoreo más que probadas que secuestran carbono, amigables con el ganado y que mejoran la fertilidad. El PNUMA advierte, sin embargo, que hay “170 mil millones de árboles en riesgo inminente de destrucción”, que deben ser protegidos para el almacenamiento de carbono y la protección de la biodiversidad cruciales.

Según el PNUMA, “la reforestación global podría capturar el 25% de las emisiones de carbono anuales globales y crear riqueza en el sur global”. Ya se han plantado más de 13.600 millones de árboles como parte de la Campaña 1 billón de árboles, que analiza y proyecta, no sólo dónde se han plantado árboles, sino también las vastas áreas donde los bosques podrían restaurarse.

La Campaña de 1 billón de árboles de la ONU está inspirada en parte por un estudio reciente del Dr. Thomas Crowther y otros, que integra datos de encuestas terrestres y satélites, que encontró que la replantación de los bosques del mundo (1,2 billones de árboles adicionales) a una escala masiva en los espacios vacíos de los bosques, las áreas deforestadas y las tierras degradadas y abandonadas en todo el planeta absorberían 100 mil millones de toneladas de exceso de carbono de la atmósfera.

Según Crowther: “hay 400 gigatoneladas ahora, en los 3 billones de árboles, y si tuvieras que escalar eso en otro billón de árboles, estaríamos hablando de cientos de gigatoneladas capturadas de la atmósfera – al menos 10 años de emisiones antropogénicas completamente borradas… [los árboles son] nuestra arma más poderosa en la lucha contra el cambio climático”, dijo.

Y las proyecciones de Crowther (10 años o 450 Gt de emisiones de CO2 que se pueden secuestrar a través de la reforestación global) no incluyen la enorme cantidad de absorción y secuestro de carbono que podemos lograr a través de prácticas agroforestales y silvopastoriles, plantando árboles, aunque solo sea unos pocos árboles por hectárea, en los 1,6 mil millones de hectáreas de tierras de cultivo y 3,2 mil millones de hectáreas de pasturas y pastizales a menudo deforestadas de EE. UU. y del mundo.

Acabar con la emergencia climática: implementación a gran escala

Regeneration International cuenta con 354 organizaciones afiliadas en 69 países de África, Asia, América Latina, Oceanía, América del Norte y Europa. Esto nos da la capacidad de trabajar con nuestras organizaciones afiliadas en todos los continentes cultivables para desarrollar y ampliar soluciones agrícolas regenerativas apropiadas para múltiples países y regiones.

La transición de una pequeña proporción (10%) de la producción agrícola mundial a estos sistemas regenerativos basados ​​en la evidencia y las mejores prácticas capturará suficiente CO2 para revertir el cambio climático y restaurar el clima global, especialmente en conjunto con un agresivo programa global de reforestación como la Campaña de 1 billón de árboles.

Si el sistema agroforestal de agave orgánico y regenerativo patrocinado por RI se implementa a nivel mundial en el 10% (400 millones de hectáreas) de las tierras áridas y semiáridas, secuestrará 10,8 Gt de CO2 por año.

El 5% de las tierras agrícolas globales regeneradas por el sistema de compostaje orgánico BEAM puede secuestrar 9,18 Gt de CO2 por año.

El 5% de las granjas pequeñas en tierras de cultivo permanente y arable que utilizan los sistemas orgánicos biointensivos “sin matar sin arar” de la granja Singing Frogs podrían secuestrar 8,9 Gt de CO2 / año.

El 10% de los pastizales manejados bajo pastoreo regenerativo podría secuestrar 9,86 Gt de CO2 por año.

El 10% de las tierras agrícolas que utilizan el método CCPP podrían secuestrar 6,38 Gt de CO2 por año.

El despliegue a nivel mundial de todas estas prácticas regenerativas y orgánicas de primer nivel en el 5-10% de todas las tierras agrícolas (incluidas las tierras áridas y semiáridas donde la siembra de cultivos y el pastoreo de animales son cada vez más problemáticos) resultaría en 45,12 Gt de CO2 por año secuestrado en el suelo y almacenado en la superficie de forma continua, que es un 50% más que la cantidad de secuestro necesaria para extraer los 31,25 Gt de CO2 que se liberan actualmente a la atmósfera y los océanos. Y esto no incluye el secuestro masivo de CO2 que es posible bajo la Campaña de un billón de árboles.

Estos cálculos aproximados están diseñados para mostrar el considerable potencial de implementar a gran escala estos sistemas regenerativos probados de alto rendimiento. Los ejemplos son soluciones “listas para usar”, ya que se basan en prácticas existentes. No es necesario invertir en tecnologías caras, potencialmente peligrosas y no probadas, como la captura y almacenamiento de carbono o la geoingeniería.

El objetivo de lograr tasas de adopción del 5-10% para estas prácticas regenerativas y orgánicas en todo el mundo es realista y alcanzable. Las prioridades fundamentales son educar a los consumidores y crear la demanda del mercado, identificar y promover las mejores prácticas regenerativas en todos los países y regiones del mundo, cambiar las políticas públicas siempre que sea posible (desde a nivel local al internacional) y luego financiar (usando dinero del sector público y privado), expandir y escalar estos sistemas orgánicos y regenerativos para restaurar ecosistemas, secuestrar carbono, regenerar la salud pública y eliminar la pobreza rural.

Es hora de continuar con la restauración de los ecosistemas globales y la reducción del exceso de CO2 mediante la implementación masiva de las “mejores prácticas” existentes de la agricultura regenerativa, la gestión ganadera, las prácticas forestales y el uso de la tierra. Todo esto es muy factible y alcanzable. Requerirá una inversión sustancial en capital natural de los donantes públicos y privados existentes y de instituciones nacionales e internacionales, pero obviamente “el costo vale la pena” en comparación con las pràcticas de siempre de nuestra actual “economía suicida”. Requerirá que las organizaciones de capacitación y las ONG relevantes lleven a cabo cursos y talleres desde los pueblos estadounidenses a Oriente Medio y más allá, a través de sistemas de capacitación de agricultor a agricultor impulsados ​​desde las bases, y apoyados por consumidores urbanos en todo el mundo. Es tarde. Pero todavía hay tiempo para cambiar las cosas.

La adopción generalizada de las mejores prácticas orgánicas y regenerativas debe ser la máxima prioridad para los agricultores, ganaderos, gobiernos, organizaciones internacionales, representantes electos, industria, organizaciones de capacitación, instituciones educativas y organizaciones de cambio climático. Se lo debemos a las generaciones futuras y a toda la rica biodiversidad de nuestro precioso planeta viviente.

 

Referencias / fuentes:

         Johnson D, Ellington J and Eaton W, (2015)  Development of soil microbial communities for promoting sustainability in agriculture and a global carbon fix, PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.789v1 | CC-BY 4.0 Open Access | rec: 13 ene 2015, publ: 13 ene 2015

Jones C, (2009) Adapting farming to climate variability, Amazing Carbon, www.amazingcarbon.com

Lal R (2008). Sequestration of atmospheric CO2 in global carbon pools. Energy and Environmental Science, 1: 86–100.

Kulp SA & Strauss BH (2019), New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding, Nature Communications, (2019)10:4844,  https://doi.org/10.1038/s41467-019-12808-z, www.nature.com/naturecommunications

McCosker, T. (2000). “Cell Grazing – The First 10 Years in Australia,” Tropical Grasslands. 34:  207-218.

Machmuller MB, Kramer MG, Cyle TK, Hill N, Hancock D & Thompson A (2014). Emerging land use practices rapidly increase soil organic matter, Nature Communications 6, articulo numero: 6995 doi:10.1038/ncomms7995, Received 21 June 2014 Accepted 20 marzo 2015 publicado 30 abril 2015

NOAS (2017). National Oceanic and Atmospheric Administration (US)

https://www.climate.gov/news-features/climate-qa/how-much-will-earth-warm-if-carbon-dioxide-doubles-pre-industrial-levels, visitado 30 ene 2017

Rohling EJ, K. Grant, M. Bolshaw, A. P. Roberts, M. Siddall, Ch. Hemleben and M. Kucera (2009) Antarctic temperature and global sea level closely coupled over the past five glacial cycles, Nature Geoscience, advance online publication,  www.nature.com/naturegeoscience

Spratt D and Dunlop I, 2019, Existential climate-related security risk: A scenario approach, Breakthrough – National Centre for Climate Restoration, Melbourne, Australia

www.breakthroughonline.org.au, mayo 2019 actualizado 11 junio 2019

https://docs.wixstatic.com/ugd/148cb0_90dc2a2637f348edae45943a88da04d4.pdf

Tong W, Teague W R, Park C S and Bevers S, 2015, GHG Mitigation Potential of Different Grazing Strategies in the United States Southern Great Plains, Sustainability 2015, 7, 13500-13521; doi:10.3390/su71013500, ISSN 2071-1050, www.mdpi.com/journal/sustainability

UNCCD, 2017, The Global Land Outlook 2017, Secretariat of the United Nations Convention to Combat Desertification Platz der Vereinten Nationen 153113 Bonn, Germany

https://knowledge.unccd.int/sites/default/files/2018-06/GLO%20English_Full_Report_rev1.pdf

Global Agricultural Land Figures

United Nation’s Food and Agriculture Organization (FAO),  FAOSTAT data on land use, recuperado 4 diciembre, 2015

La cantidad total de tierra utilizada para producir alimentos es de 4.911.622.700 hectáreas (18.963.881 millas cuadradas).

Esta se divide en: 

Tierras cultivables/arables: 1.396.374.300 hectáreas (5.391.431 millas cuadradas)

Pastos permanentes: 3.358.567.600 hectáreas (12.967.502 millas cuadradas)

Cultivos permanentes: 153.733.800 hectáreas (593,570 millas cuadradas)

Cálculos del Proyecto mil millones de agaves

Según la UNCCD The Global Land Outlook 2017, casi el 45% de las tierras agrícolas del mundo se encuentran en áreas secas, principalmente en África y Asia.

45% de tierras de cultivos (4.911.622.700 ha x 45%) = 2,2 mil millones de hectáreas

2,2 x 270 t de CO2 por ha = 594 Gt of CO2 por año

Cálculos BEAM 

Un cálculo básico demuestra el potencial de implementar esta tecnología simple a gran escala en las tierras agrícolas mundiales. Carbono orgánico del suelo x 3,67 = CO2, lo que significa que 10,27 toneladas métricas de carbono del suelo = 37,7 toneladas métricas de CO2 por hectárea por año (t CO2 / ha / año). Esto significa que BEAM puede secuestrar 37,7 toneladas de CO2 por hectárea, lo que equivale aproximadamente a 38.000 libras de CO2 por acre.

Si BEAM se extrapolara globalmente a tierras agrícolas, secuestraría 185 Gt de CO2 / año. (37,7 t CO2 / ha / año X 4,911,622,700 ha = 185,168,175,790t CO2 / ha / año)

Cálculos de la granja Singing Frogs

Los Kaiser han logrado aumentar la materia orgánica del suelo del 2,4% a un óptimo 7-8% en solo seis años, un aumento promedio de aproximadamente 3/4 de punto porcentual por año.

(Elizabeth Kaiser Pers. Com. 2018 and Chico State University https://www.csuchico.edu/regenerativeagriculture/demos/singing-frogs.shtml

“Un aumento del 1% en el nivel de carbono del suelo en el perfil del suelo de 0-30 cm equivale a un secuestro de 154 tCO2 / ha si se cuenta con una densidad aparente promedio de 1,4 g / cm3” (Jones C. 2009)

3/4 % OM = 115,5 toneladas métricas de CO2 por hectárea (115.500 libras por acre por año)

Este sistema se puede utilizar en tierras arables y de cultivos permanentes. Tierra cultivable / arable: 1.396.374.300 hectáreas más cultivos permanentes: 153.733.800 hectáreas = 1.550.108.100 hectáreas

Extrapolado a nivel mundial a través de tierras cultivables permanentes y arables, secuestraría 179 Gt de CO2/año (1.550.108.100 hectáreas x 115,5 toneladas métricas de CO2 por hectárea = 179.037.485,550 toneladas métricas)

Cálculos del pastoreo regenerativo

Para explicar la importancia de las cifras de Machmuller: 8,0 Mg ha − 1 año − 1 = 8.000 kg de carbono almacenados en el suelo por hectárea por año. Carbono orgánico del suelo x 3,67 = CO2, lo que significa que estos sistemas de pastoreo han secuestrado 29.360 kg (29,36 toneladas métricas) de CO2 / ha / año. Esto es aproximadamente 30.000 libras de CO2 por acre.

Si estas prácticas de pastoreo regenerativo se implementaran en las tierras de pastoreo del mundo, secuestrarían 98,6 Gt CO2 / año.

(29,36 t CO2/ha/año X 3.358.567.600 ha = 98.607.544.736t CO2/ha/año)

Cálculos de CCPP

Tierras agrícolas: 4.911.622.700 ha x 13t CO2/ha/año = 63,8 Gt of CO2 por año 

Cálculos de la reforestación global

El Proyecto de un billón de árboles

 

Andre Leu es el Director Internacional de Regeneration International. 

Ronnie Cummins es cofundador de Organic Consumers Association (OCA) y Regeneration International

Para suscribirse al boletín de RI haga clic aquí.

Best Practices: How Regenerative & Organic Agriculture and Land Use Can Reverse Global Warming

Leer en español aquí

Summary 

  • The earth’s soils, along with trees and plants, are the largest sink or depository for carbon after the oceans.
  • Regenerative organic agricultural practices sequester CO2 and store it in the soil and above ground as organic matter. Perennial polycultures, agroforestry, and reforestation can sustain and increase both above ground and below ground carbon.
  • Scaling up a small percentage (5-10%) of best practice regenerative and organic systems will result in billions of tons (Gt) of CO2 per year being sequestered into the soil and into continuous, perennial above ground biomass. The identification, funding, and deployment of these best practices on 5-10% or more of the world’s total croplands (4 billion acres), rangelands (8 billion acres), and forestlands (10 billion acres) will be more than enough to draw down and cancel out all the current CO2 and greenhouse gases (43 Gt of CO2) that are currently being emitted, without putting any more CO2 into the atmosphere or the oceans.
  • Currently when carbon dioxide CO2 is released into the atmosphere from the burning of fossil fuels or destructive agriculture or land use practices (currently 43 Gt of CO2 emissions per year), approximately 50% of these 43 Gt of CO2 emissions remain in the atmosphere (21.5 Gt of CO2 annually), while 25% is absorbed by land, plants, and trees (10.75 Gt CO2), and the remainder 25% (10.75 Gt CO2) is absorbed into the ocean. Therefore, we need to begin to draw down 32.25 Gt CO2 (and eventually more) of current total emissions (in conjunction with the conversion to alternative energy and energy conservation), in order to reach net zero emissions (eliminate or cancel out all the emissions going into the atmosphere and the oceans). We will need a net drawdown of 32.75 Gt as soon as possible since 10.75 Gt is already being sequestered by our soils and forests. Once we stop putting more CO2 into the oceans (and the atmosphere), while continuing down the path of alternative energy and regenerative agriculture and land use, the oceans, soils, and biota will be able to draw down evermore significant amounts of the legacy (excess) carbon in the atmosphere, which, in turn, will begin to steadily reduce global warming.
  • Regeneration International, a global regenerative and organic agriculture network, with 354 partner organizations in 69 countries in Africa, Asia, Latin America, Oceania, North America and Europe has begun to help publicize global best practices and coordinate the deployment, funding, and scaling up of these systems.

 

Introduction

Hardly anyone had heard of regenerative agriculture before September 2014, when Regeneration International was founded by a small group of international leaders in the organic, agroecology, holistic management, environment, and natural health movements with the goal of changing the global conversation on climate, farming, and land use.  Now the topic of regenerative agriculture is in the news everyday all around the world.

The concept of a coordinated global regeneration movement was initially put forth at the massive Climate Change March in New York, September 22, 2014, at a press conference in the Rodale Institute headquarters. The press conference brought together a global network of like-minded farmers, ranchers, land managers, consumer, and climate activists.

RI’s first General Assembly was held in Costa Rica in 2015 with participants from every continent.  In five years Regeneration International has grown with 354 partner organizations in 69 countries in Africa, Asia, Latin America, Oceania, North America and Europe. RI and our allies have been successful in promoting the concept of regenerative agriculture as a game-changing system for ecosystem restoration and sequestering carbon dioxide on a scale and timeline appropriate to our current Climate Emergency.

Why Regenerative Agriculture?

Regenerative agriculture is based on a range of farming, livestock management, and land use practices that utilize the photosynthesis of plants and trees to capture CO2 and store it in the soil and above ground. Regenerative agriculture is now being used as a generic term for the many farming systems that use techniques such as longer rotations, cover crops, green manures, legumes, compost, organic fertilizers, holistic livestock management, and agroforestry. However, Regeneration International believes that true regenerative agriculture must be both organic and regenerative.

Other terms describing regenerative agriculture Include: organic agriculture, agroforestry, agroecology, permaculture, holistic grazing, silvopasture, syntropic farming, pasture cropping and other agricultural systems that can increase soil organic matter/carbon. Soil organic matter is an important proxy for soil health—as soils with low levels are not healthy.

The soil holds almost three times the amount of carbon as the atmosphere and biomass (forests and plants) combined. Long term research shows that soil carbon can be stable for more than 100 years, while appropriate forestry and agroforestry practices can store carbon aboveground on a continuous basis.

Managing climate change is a major issue that we have to deal with now

Atmospheric CO2 levels have been increasing at 2 parts per million (ppm) per year. The level of CO2 reached a new record of 400 ppm in May 2016. However, despite all the commitments countries made in Paris in December 2015, the levels of CO2 increased by 3.3 ppm in 2016 creating a record. It increased by 3.3 ppm from 2018 to set a new record of 415.3 ppm in May 2019. Despite the global economic shut down as a response to the COVID-19 pandemic, CO2 levels still set a new record of 417.2 ppm in May 2020. This is a massive increase in emissions per year since the Paris Agreement and shows the reality is that most countries are not even close to meeting their Paris reduction commitments.

Reversing Climate Change

417 ppm far exceeds the Paris objective of limiting the earth’s temperature increase to 2 degrees Celsius.

In order to stabilize atmospheric CO2 levels, regenerative agricultural systems will have to drawdown the current increase of emissions of 3.3 ppm of CO2 per year. Using the accepted formula that 1 ppm CO2 = 7.76 Gt CO2 means that, at a minimum, 25.61 gigatons (Gt) of CO2 per year needs to be drawn down from the atmosphere. But in reality we need to drawdown 31.25 Gt of CO2 or more if we want to stop more CO2 from heating up our already overheated oceans and begin to drawdown the legacy 417 ppm CO2 lodged in the atmosphere.

The Potential of “Best Practices” of Regenerative Agriculture

There are numerous regenerative farming systems that can sequester CO2 from the atmosphere through enhanced plant photosynthesis and turn this CO2 into soil organic matter through the actions of the roots and soil biology – the soil microbiome. Others can increase above ground carbon storage through regenerative forest and agroforestry/silvopasture practices. We don’t have time to waste on farming or land use systems that only sequester small amounts of CO2. We need to concentrate on qualitatively scaling up and expanding systems that can achieve high levels of carbon sequestration and ecosystem restoration, systems that are appropriate and scalable for different countries, regions, cultures, and ecosystems.

The simple back of the envelope calculations used for the examples below are a good exercise to show the world-changing potential of these best practice regenerative systems to address the climate emergency and actually start to reverse global warming.

Agave Agroforestry System

The “Billion Agave Project” is a game-changing ecosystem regeneration strategy recently adopted by a growing number of innovative Mexican farms in the high-desert region of Guanajuato, now spreading across Mexico.

This agroforestry system combines the dense cultivation (800 per acre, 2,000 per hectare) of agave plants and nitrogen-fixing companion tree species (such as mesquite), with holistic rotational grazing of livestock. The result is a high-biomass, high forage-yielding system that works well even on degraded, semi-arid lands.

The system produces large amounts of agave leaf and root stem or piña. When chopped and fermented in closed containers, this plant material produces an excellent, inexpensive silage as animal fodder.

Having a large quantity of fermented animal forage on hand reduces the pressure to overgraze brittle rangelands and improves soil health, water retention, and animal health, while drawing down and storing massive amounts of atmospheric CO2 (270 tons of CO2 stored above ground per hectare on a continuous annual basis after 3-10 years.)

The agave agroforestry system can be scaled up across much of the arid and semi-arid regions of the world using native legume trees and grasses, to form highly productive biodiverse agro-forestry systems that are based on the native species of each region. The chopping and fermentation of the legume tree seed pods, such as mesquite (which fix nitrogen and nutrients into the soil), added to the fermented agave, produce a high protein animal fodder superior to alfalfa and at a fraction of the cost, all without the need for any irrigation or synthetic chemicals whatsoever.

Recent research by Hudson Carbon shows that this agave agroforestry system can sequester 270 tons of CO2 per hectare (109 tons per acre) above ground per year on a continuous basis, without counting below ground sequestration nor the amount of carbon sequestered by the (200 per acre) companion trees.

According to the United Nation Convention to Combat Desertification (UNCCD) approximately 40 per cent of the world’s land (4 billion hectares, 10 billion acres) is composed of deserts and drylands, mainly in Africa, Asia, and Latin America. These areas sustain over two billion people and supply about 60 per cent of the world’s food production. If the organic and regenerative agave agroforestry system was deployed globally on 10% (400 million hectares) of these 4 billion hectares of arid and semi-arid drylands, it would sequester 10.8 Gt of CO2 per year. This represents approximately 1/3 of the amount of CO2 that needs to be sequestered every year to reverse climate change.

BEAM

BEAM (Biologically Enhanced Agricultural Management), developed by Dr. David Johnson of New Mexico State University, produces organic compost with a high diversity of soil microorganisms, especially fungal material. Multiple crops grown with BEAM have achieved very high levels of sequestration and yields. Research published by Dr. Johnson and colleagues show: “… a 4.5-year agricultural field study promoted annual average capture and storage of 10.27 metric tons’ soil C ha-1 year -1 while increasing soil macro-, meso- and micro-nutrient availability offering a robust, cost effective carbon sequestration mechanism within a more productive and long-term sustainable agriculture management approach.” These results are currently being replicated in other trials.

These figures mean that BEAM can sequester 37,700 kilos (37.7 tons) of CO2 per hectare per year which is approximately 15.3 tons of CO2 per acre.

BEAM can be used in all soil based food production systems including annual crops, permanent crops and grazing systems, including arid and semi-arid regions. If BEAM was deployed globally on just 5 % of all (2.5 billion hectares or 12 billion acres) agricultural lands, it would sequester 9.18 Gt of CO2 per year.

Potential of “No Kill No Till” Bio-intensive Organic

Singing Frogs Farm, located just north of San Francisco, California, is a highly productive No Kill No Till richly biodiverse organic, agroecological horticulture farm on 3 acres. The key to their no till system is to cover the planting beds with mulch and compost instead of plowing them, or using herbicides, and planting directly into the compost, along with a high biodiversity of cash and cover crops that are continuously rotated to break weed, disease and pest cycles.

According to Chico State University they have increased the soil organic matter (SOM) levels by 400% in six years. The Kaisers, the owner/operators of Singing Frogs Farm, have increased their SOM from 2.4% to an optimal 7-8% with an average increase of about 3/4 of a percentage point per year. This farming system is applicable to more than 80% of farms around the world as the majority of farmers have less than 2 hectares (5 acres). If the Singing Frogs farm was extrapolated globally across 5% of arable and permanent crop lands it would sequester 8.9 Gt of CO2/yr.

Potential of Regenerative Grazing

There is now a considerable body of published science and evidence based practices showing that regenerative grazing systems can sequester more greenhouse gases than they emit, making them a major solution for reversing climate change.

As well as sequestering CO2, these systems regenerate degraded pasture and rangelands, improve productivity, water holding capacity and soil carbon levels.

Around 68% of the world’s agricultural lands are used for grazing. The published evidence shows that correctly managed pastures can build up soil carbon faster than many other agricultural systems and this is stored deeper in the soil.

Research by published Machmuller et al. 2015: “In a region of extensive soil degradation in the southeastern United States, we evaluated soil C accumulation for 3 years across a 7-year chronosequence of three farms converted to management-intensive grazing. Here we show that these farms accumulated C at 8.0 Mg ha−1 yr−1, increasing cation exchange and water holding capacity by 95% and 34%, respectively.”

The means that they have sequestered 29,360 kilos of CO2 per hectare per year. This is approximately 29,000 pounds of CO2 per acre. If these regenerative grazing practices were implemented on 10 % the world’s grazing lands they would sequester 9.86 Gt of CO2 per year.

Pasture Cropping

Pasture cropping is where the cash crop is planted into a perennial pasture instead of into bare soil. There is no need to plough out the pasture species as weeds or kill them with herbicides before planting the cash crop. The perennial pasture becomes the cover crop.

This was first developed by Colin Seis in New South Wales. The principle is based on the sound ecological fact that annual plants grow in perennial systems. The key is to adapt this principle to the appropriate management system for the specific cash crops and climate.

An excellent example of the development of pasture cropping / no-till no-kill is the Soil Kee, which was designed by Neils Olsen.

First the ground cover/pasture is grazed or mulched to reduce root and light competition. Then the Soil Kee breaks up root mass, lifts and aerates the soil, top-dresses the ground cover/pasture in narrow strips, and plants seeds, all with minimal soil disturbance. The seeds of the cover/cash crops are planted and simultaneously fed an organic nutrient such as guano. The faster the seed germinates and grows, the greater the yield. It is critical to get the biology and nutrition to the seed at germination and to remove root competition.

Pasture cropping is excellent at increasing soil organic matter/soil carbon. Neils Olsen has been paid for sequestering 11 tonnes of CO2 per hectare per year, under the Australian government’s Carbon Farming Scheme in 2019. He was paid for 13 tonnes of CO2 per hectare per year in 2020. He is the first farmer in the world to be paid for sequestering soil carbon under a government regulated system.

If this system were deployed on 10% of all agricultural lands it would sequester 6.38 Gt of CO2 per year.

Global Reforestation

In addition to re-carbonizing and regenerating agricultural lands, a major part of regenerating the Earth and reversing climate change will be to preserve, restore, and expand the world’s 10 billion acres of forests and wetlands.  This reforestation and afforestation will include planting up to a trillion tress in deforested areas, as well as several hundred billion trees and perennials back into the world’s four billion acres of cropland (agroforestry) and eight billion acres of pasturelands or rangeland (silvopasture).

The global tree population, which covers 30% of the Earth’s land area, is estimated to be three trillion trees, with 15 billion trees cut down every year. Since humans began farming, 10,000 years ago, approximately half of the trees on Earth have been cut down and not replanted. The Earth’s forests and wetlands now sequester over 700 billion tons of carbon, and currently draw down, even with massive deforestation and forest fires taken into account, an additional “net sink” of 1.2 gigatons of carbon. (White, Biosequestration and Biological Diversity, p.101) The net sink or carbon sequestration power of today’s forests amounts to approximately 12% of all current human emissions.

If “net deforestation” (more tress being cut down, clear-cut, or burned than the amount of healthy and new tree growth) could be halted in forested areas, especially in tropical areas where the trees grow faster and store the most carbon, and forests worldwide could be managed to increase photosynthesis and biomass through massive reforestation (and by thinning out crowded forest areas with thousands of trees per acre to hundreds of the healthiest and largest trees per acre), the world’s forests could net sequester four billion tons or more of atmospheric carbon a year, a full 40% of all current human emissions.  Along with renewable energy and carbon farming, If we stop deforestation and reforest the Earth with an a trillion, species-appropriate trees, and then maintain these trees, we can literally reverse global warming. 

The United Nations Environmental Project (UNEP) has now announced a new goal for global reforestation and carbon sequestration called the “Trillion Tree Campaign.” The UN points out that there is enough deforested or empty space in rural and urban areas to plant a trillion trees on the planet of which 600 billion mature trees can be expected to survive. And this trillion tree planting campaign does not include the additional 100 billion-plus trees that could and should be planted on the Earth’s 12 billion acres of croplands and pastures utilizing the tried-and-proven carbon sequestering, livestock friendly, fertility-enhancing techniques of agroforestry and silvopasture. UNEP warns however that there are “170 billion trees in imminent risk of destruction,” that must be protected for crucial carbon storage and biodiversity protection.

According to UNEP, “Global reforestation could capture 25 percent of global annual carbon emissions and create wealth in the global south.” More than 13.6 billion trees have already been planted as part of the Trillion Tree Campaign, which analyzes and projects, not only where trees have been planted, but also the vast areas where forests could be restored.

The UN’s Trillion Tree Campaign is inspired in part by a recent study by Dr. Thomas Crowther and others, integrating data from ground-based surveys and satellites, that found that replanting the world’s forests (an additional 1.2 trillion trees) on a massive scale in the empty spaces in forests, deforested areas, and degraded and abandoned land across the planet would draw down 100 billion tons of excess carbon from the atmosphere.

According to Crowther: “There’s 400 gigatons now, in the 3 trillion trees, and if you were to scale that up by another trillion trees that’s in the order of hundreds of gigatons captured from the atmosphere – at least 10 years of anthropogenic emissions completely wiped out… [trees are] our most powerful weapon in the fight against climate change,” he said.

And Crowther’s projections (10 years or 450 Gt of CO2 emissions that can be sequestered via global reforestation) do not include the massive amount of carbon drawdown and sequestration we can achieve through agroforestry and silvopasture practices, planting trees, if only a few trees per acre, on the US and the world’s often deforested 4 billion acres of croplands and 8 billion acres of pasturelands, rangelands, and pastures.

Ending the Climate Emergency- Scaling Up

Regeneration International has 354 partner organizations in 69 countries in Africa, Asia, Latin America, Oceania, North America and Europe. This gives us the ability work with our partner organizations on every arable continent to develop and scale up appropriate regenerative agricultural solutions for multiple countries and regions.

Transitioning a small proportion (10%) of global agricultural production to these evidence based, best-practice, regenerative systems will sequester enough CO2 to reverse climate change and restore the global climate, especially in conjunction with an aggressive global reforestation program such as the Trillion Tree Campaign.

If the RI-sponsored organic and regenerative agave agroforestry system is deployed globally on 10% (400 million hectares) of arid and semi-arid drylands, it will sequester 10.8 Gt of CO2 per year.

Five percent of global agricultural lands regenerated by the BEAM organic compost system can sequester 9.18 Gt of CO2 per year.

Five percent of small holder farms across arable and permanent crop lands using Singing Frogs Farm’s biointensive organic No Kill No Till systems could sequester 8.9 Gt of CO2/yr.

Ten percent of grasslands under regenerative grazing could sequester 9.86 Gt of CO2 per year.

10% of agricultural lands using pasture cropping could sequester 6.38 Gt of CO2 per year.

The deployment of all of these regenerative and organic best practices across the world on 5-10% of all agricultural lands (including arid and semi-arid lands where raising crops and grazing animals are increasingly problematic) would result in 45.12  Gt of CO2 per year being sequestered into the soil, and stored aboveground on a continuous basis, which is 50% more than the amount of sequestration needed to drawdown the 31.25 Gt of CO2 that is currently being released into the atmosphere and the oceans. And this does not include the massive CO2 sequestration that is possible under the Trillion Tree Campaign.

These back of the envelope calculations are designed to show the considerable potential of scaling up proven high performing regenerative systems. The examples are ‘shovel ready’ solutions as they are based on existing practices. There is no need to invest in expensive, potentially dangerous and unproven technologies such as carbon capture and storage or geo-engineering.

Aiming to achieve 5-10% adoption rates for these regenerative and organic practices across the globe is realistic and achievable. The critical priorities are to educate consumers and build market demand, identify and promote regenerative best practices in all the countries and regions of the world, change public policies wherever possible (from the local to the international level) and then fund (through private and public money), expand, and scale up these regenerative and organic systems to restore ecosystems, sequester carbon, regenerate public health and eliminate rural poverty.

It is time to get on with restoring global ecosystems and drawing down excess CO2  by scaling up the existing “best practices” regenerative agriculture, livestock management, forest practices, and land use. All of this is very doable and achievable. It will require substantial investment in natural capital from existing private and public funders and national and international institutions, but it is obviously “worth the cost” compared to the business as usual of our current “suicide economy.” It will require training organizations and relevant NGOs to run courses and workshops from Main Street to the Middle East and beyond, scaled up through grassroots-powered farmer to farmer training systems, and supported by urban consumers across the world. The hour is late. But there is still time to turn things around.

The widespread adoption of best practice regenerative and organic practices should be the highest priority for farmers, ranchers, governments, international organizations, elected representatives, industry, training organizations, educational institutions and climate change organizations. We owe this to future generations and to all the rich biodiversity on our precious living planet.

 

References/sources:

         Johnson D, Ellington J and Eaton W, (2015)  Development of soil microbial communities for promoting sustainability in agriculture and a global carbon fix, PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.789v1 | CC-BY 4.0 Open Access | rec: 13 Jan 2015, publ: 13 Jan 2015

Jones C, (2009) Adapting farming to climate variability, Amazing Carbon, www.amazingcarbon.com

Lal R (2008). Sequestration of atmospheric CO2 in global carbon pools. Energy and Environmental Science, 1: 86–100.

Kulp SA & Strauss BH (2019), New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding, Nature Communications, (2019)10:4844,  https://doi.org/10.1038/s41467-019-12808-z, www.nature.com/naturecommunications

McCosker, T. (2000). “Cell Grazing – The First 10 Years in Australia,” Tropical Grasslands. 34:  207-218.

Machmuller MB, Kramer MG, Cyle TK, Hill N, Hancock D & Thompson A (2014). Emerging land use practices rapidly increase soil organic matter, Nature Communications 6, Article number: 6995 doi:10.1038/ncomms7995, Received 21 June 2014 Accepted 20 March 2015 Published 30 April 2015

NOAS (2017). National Oceanic and Atmospheric Administration (US)

https://www.climate.gov/news-features/climate-qa/how-much-will-earth-warm-if-carbon-dioxide-doubles-pre-industrial-levels, Accessed Jan 30 2017

Rohling EJ, K. Grant, M. Bolshaw, A. P. Roberts, M. Siddall, Ch. Hemleben and M. Kucera (2009) Antarctic temperature and global sea level closely coupled over the past five glacial cycles, Nature Geoscience, advance online publication,  www.nature.com/naturegeoscience

Spratt D and Dunlop I, 2019, Existential climate-related security risk: A scenario approach, Breakthrough – National Centre for Climate Restoration, Melbourne, Australia

www.breakthroughonline.org.au, May 2019 Updated 11 June 2019

https://docs.wixstatic.com/ugd/148cb0_90dc2a2637f348edae45943a88da04d4.pdf

Tong W, Teague W R, Park C S and Bevers S, 2015, GHG Mitigation Potential of Different Grazing Strategies in the United States Southern Great Plains, Sustainability 2015, 7, 13500-13521; doi:10.3390/su71013500, ISSN 2071-1050, www.mdpi.com/journal/sustainability

UNCCD, 2017, The Global Land Outlook 2017, Secretariat of the United Nations Convention to Combat Desertification Platz der Vereinten Nationen 153113 Bonn, Germany

https://knowledge.unccd.int/sites/default/files/2018-06/GLO%20English_Full_Report_rev1.pdf

Global Agricultural Land Figures

United Nation’s Food and Agriculture Organization (FAO),  FAOSTAT data on land use, retrieved December 4, 2015

The total amount of land used to produce food is 4,911,622,700 Hectares (18,963,881 square miles).

This is divided into:

Arable/Crop land: 1,396,374,300 Hectares (5,391,431 square miles)

Permanent pastures: 3,358,567,600 Hectares (12,967,502 square miles)

Permanent crops: 153,733,800 Hectares (593,570 square miles)

The Billion Agave Project Calculations

According to the UNCCD The Global Land Outlook 2017, almost 45 per cent of the world’s agricultural land is located on drylands, mainly in Africa and Asia.

45% of croplands (4,911,622,700 ha x 45%) = 2.2 billion Hectares

2.2 x 270 tons of CO2 per ha = 594 Gt of CO2 per year

BEAM Calculations

A basic calculation shows the potential of scaling up this simple technology across the global agricultural lands. Soil Organic Carbon x 3.67 = CO2 which means that 10.27 metric tons soil carbon = 37.7 metric tons of CO2 per hectare per year (t CO2/ha/yr). This means BEAM can sequester 37.7 tons of CO2 per hectare which is approximately 38,000 pounds of CO2 per acre.

If BEAM was extrapolated globally across agricultural lands it would sequester 185 Gt of CO2/yr. (37.7 t CO2/ha/yr X 4,911,622,700 ha = 185,168,175,790t CO2/ha/yr)

Singing Frogs Farm Calculations

The Kaisers have managed to increase their soil organic matter from 2.4% to an optimal 7-8% in just six years, an average increase of about 3/4 of a percentage point per year (Elizabeth Kaiser Pers. Com. 2018 and Chico State University https://www.csuchico.edu/regenerativeagriculture/demos/singing-frogs.shtml

“An increase of 1% in the level of soil carbon in the 0-30cm soil profile equates to sequestration of 154 tCO2/ha if an average bulk density of 1.4 g/cm3” (Jones C. 2009)

3/4 % OM = 115.5 metric tons of CO2 per hectare (115,500 pounds an acre per year)

This system can be used on arable and permanent crop lands. Arable/Crop land: 1,396,374,300 Hectares plus Permanent crops: 153,733,800 Hectares = 1,550,108,100 Hectares

Extrapolated globally across arable and permanent crop lands it would sequester 179 Gt of CO2/yr (1,550,108,100 Hectares x 115.5 metric tons of CO2 per hectare = 179,037,485,550 metric tons)

Regenerative Grazing Calculations

To explain the significance of Machmuller’s figures: 8.0 Mg ha−1 yr−1 = 8,000 kgs of carbon being stored in the soil per hectare per year. Soil Organic Carbon x 3.67 = CO2, which means that these grazing systems have sequestered 29,360 kgs (29.36 metric tons) of CO2/ha/yr. This is approximately 30,000 pounds of CO2 per acre.

If these regenerative grazing practices were implemented on the world’s grazing lands they would sequester 98.6 Gt CO2/yr.

(29.36t CO2/ha/yr X 3,358,567,600 ha = 98,607,544,736t CO2/ha/yr)

Pasture Cropping Calculations

Agricultural lands 4,911,622,700 ha x 13t CO2/ha/yr = 63.8 Gt of CO2 per year

Global Reforestation Calculations

The Trillion Tree Project

 

Andre Leu is the International Director for Regeneration International. To sign up for RI’s email newsletter, click here.

Ronnie Cummins is co-founder of the Organic Consumers Association (OCA) and Regeneration International. To keep up with RI’s news and alerts, sign up here.

Ganadería carbono positivo: el futuro de la carne verde y la madera

“Un solo árbol aporta el oxígeno necesario que respiran tres personas por día”. Moverse de manera sustentable se ha convertido en el desvelo de toda actividad productiva. Sea industrial, como agropecuaria, como minera o de cualquier tipo, todos están bajo la lupa del cambio climático. Cuánto hacen y cuánto generan, ¿cuánto contaminan? ¿Y qué devuelven a cambio?

“El cambio climático es un tema que nos tiene preocupados, cada año la temperatura de la atmósfera marca récords y en este contexto, los árboles presentan un servicio ambiental indispensable para absorber CO2, una acción positiva que puede verse reflejada en bonos de carbono”, disparó como puntapié inicial, el presidente de la Asociación Forestal Argentina (AFoA), en el seminario sobre captación de carbono como parte del negocio forestal.

Los más de 500 personas que se sumaron a las distintas exposiciones, no sólo de Argentina sino de Latinoamérica y España, reflejan la importancia que tiene este tema para distintos sectores.

CONTINUE LEYENDO EN CLARIN

Perennial Vegetables Are a Solution in the Fight Against Hunger and Climate Change

Marisha Auerbach’s home garden is an edible landscape. Archways of table and wine grapes shade the entry while tree kales, tree collards, and stinging nettles dot the pathway. Auerbach, a permaculture teacher at Oregon State University, and her partner, Zane Ingersoll, estimate roughly 80 percent of their diet comes from this 6,600-square-foot lot in Portland. About 60 percent of the garden is perennial plants, trees, and shrubs—meaning they grow all year long and don’t need to be replanted or reseeded the following year.

Perennial agriculture—including agroforestrysilvopasture, and the development of perennial row crops such as Kernza—has come to prominence in recent years as an important part of the fights against soil erosion and climate change. Not only do perennial plants develop longer, more stabilizing roots than annual crops, but they’ve also been shown to be key to sequestering carbon in the soil.

Now, a new study in the journal PLoS ONE is pointing to vegetables like the ones in Auerbach’s garden as another important addition to the list.

KEEP READING ON CIVIL EATS

6 Reasons Why the Practice of Silvopasture Will Help Save Modern Farming

Author: Steve Gabriel | Published: August 4, 2018

Adapted from “Silvopasture: A Guide to Managing Grazing Animals, Forage Crops, and Trees in a Temperate Farm Ecosystem “(Chelsea Green Publishing, 2018) by Steve Gabriel. All rights reserved.

In addition to the range of benefits silvopasture offers to individual farms, this practice also brings a number of promising benefits to the larger society and global community. These can provide good incentives for government, industry and society to better support and encourage silvopasture as a practice.

1. Wildlife habitat and forest restoration

Farming itself is largely responsible for the fragmented chunks of forest and hedgerows we see littering the rural landscape today. Silvopasture can erase the stark line that is so often drawn between field and forest. Lands lack structural diversity, which is critical for birds and migrating animals. Ideally, we need grasslands, shrublands and deep forests to support the widest range of species. The inclusion of silvopasture into the farm landscape can greatly enhance the structural diversity of vegetation, which in turn supports a greater diversity of wildlife.

KEEP READING ON GREENBIZ

How We Can Make Beef Less Terrible for the Environment

Author: Eric Toensmeier | Published: May 30, 2018

When I began investigating how to capture carbon dioxide to fight climate change a decade ago, I had no way of knowing which tool would have the greatest potential. Years later, in 2015, when the environmentalist and entrepreneur Paul Hawken hired me to work for Project Drawdown to help model the impacts of 23 land-based climate change solutions, many on our team were surprised when a relatively unknown solution called “silvopasture” emerged as the most powerful agricultural production practice — the ninth most powerful method overall.

Silvopasture systems combine trees, livestock (ruminants like cattle, sheep and goats) and grazing. Ranchers and pastoralists plant trees or manage the land for spontaneous tree growth. The trees provide shade, timber and food for livestock. In most silvopasture systems, the carbon captured in soil and trees more than makes up for the greenhouse gases (methane and nitrous oxide) that ruminants emit through belches and flatulence. One study of intensive silvopasture in Colombia found that emissions from livestock were equal to a quarter to half of the carbon sequestered in soil and biomass.

KEEP READING ON THE WASHINGTON POST

Silvopasture: A Sustainable Way to Raise Large Livestock

Author: Tobias Roberts | Published: August 2, 2017 

Every year millions of acres of forest are cut down to make room for ever-growing herds of livestock. Our industrial diet is centered on the consumption of meat. The combination of these two issues brings us face to face with a serious problem. We are destroying our forests and some of the most pristine ecosystems on earth just so that we can enjoy a nightly steak. What if we could raise animals within a forest system?

THE PROBLEMS WITH THE LIVESTOCK INDUSTRY TODAY

Few things characterize the absolute unsustainability of our current system and way of life like the way we raise, slaughter, and consume animals in our current food system. People in the United States eat an average of 120 kg of meat per person per year. That comes out to about ¾ pound of meat each day. For comparison´s sake, a person in Mozambique eats under 8 kg of meat per year and a person in India eats just 4.4 kg of meat per year.

For most families, breakfast probably includes sausage or bacon, lunch might include a hamburger or plate of fish, while a full chicken rests on the dinner table. Much has been written recently about the negative health aspects of eating too much red meat. What very few people take into account, however, are the negative ecological and social aspects of what this massive meat consumption means.

To raise billions of pounds of meat each year requires millions of acres of pasture and other millions of acres destined to the growing of grains that are then fed to those animals. While pastures can be an extremely healthy and ecologically sustainable landscape, cutting down millions of acres of pristine rainforest to establish more pasture land for cows is not an ecologically smart proposal.

Most ecologists consider the Amazon Rainforest to be an essential “lung” for the whole earth. The amount of Amazon rainforest cut down in recent years for cattle pastures, however, has surpassed the size of Iceland, or over 10 million hectares. It is estimated that 80% of all land cleared in the Amazon is for cattle pastures. This loss of rainforest also contributes massive amounts of greenhouse gasses through the slash and burn methods of getting rid of the forest. Instead of having a massive sea of green that sucks up carbon dioxide and spits out oxygen, we´re left with huge, deforested grazing lands filled with animals that produce large amounts of methane, one of the most dangerous gasses contributing to global warming.

In fact, the worldwide cattle industry is reported to contribute upwards of 51% of all greenhouse gasses. While world leaders and climate summits have focused on reducing fossil fuel based emissions (a worthy goal, no doubt), almost no one talks about reducing the amount of meat consumed by industrial nations.

WHAT IS SILVOPASTURE?

Should we all simply become vegetarians then? While there are many health and social benefits to vegetarianism, there are other options when it comes to how we raise the meat that we eat. Silvopasture is an ancient practice that combines forestry with pasture. It seeks to grow trees in areas where animals are pastured as a way to get double the amount of production out of one area of land while also contributing to the ecological health of that area.

Throughout history, many cultures around the world have found that animals can be raised just as efficiently in a wooded area as in open pastures. In certain areas of Italy, for example, massive chestnut trees grew wild throughout the forest. People found that pigs could be fattened to slaughter weight by simply letting them roam the woods and feast on the endless amounts of chestnuts laying on the forest floor.

KEEP READING ON PERMACULTURE RESEARCH INSTITUTE 

Seeing the Pasture for the Trees

Published on: April 19, 2017

RONKS, Pa. — Shaded pastures are among the more challenging conditions faced by anyone trying to establish a productive pasture. This scenario varies but often involves a grazier who wants to set up a very intentional form of silvopasture, managing both trees and forage to balance the productivity of both.

To be clear, there is no forage crop you can grow well under full leaf canopy. Plants need some sunlight to perform photosynthesis, manufacture sugars, and grow.  Although the ideal balance of needed conditions differs for each plant, there are also a set of basic requirements for any plant to thrive.

Depending on the available sunlight, a shady area can result in a thinner stand. The less robust growth will also be less resilient to outside impacts like traffic or overgrazing. Shading reduces height of the forage species that have a naturally upright growth habit, and also leads to less tiller production. However, in shade tolerant species, leaf area and both shoot-to-root and leaf-to-stem ratios may be increased.  With less active cell division and growth, sugars are also apt to concentrate in the plant.

KEEP READING ON MORNING AG CLIPS

In the Pastures of Colombia, Cows, Crops and Timber Coexist

Author: Lisa Palmer

Over the last two decades, cattle rancher Carlos Hernando Molina has replaced 220 acres of open pastureland with trees, shrubs, and bushy vegetation. But he hasn’t eliminated the cows. Today, his land in southwestern Colombia more closely resembles a perennial nursery at a garden center than a grazing area. Native, high-value timber like mahogany and samanea grow close together along the perimeter of the pasture. The trees are strung with electric wire and act as live fences. In the middle of the pen grow leucaena trees, a protein-packed forage tree, and beneath the leucaena are three types of tropical grasses and groundcover such as peanuts.

The plants provide his 90 head of cattle with vertical layers of grazing, leading to twice the milk and meat production per acre while reducing the amount of land needed to raise them. His operation is part of a trend globally to sustainably coax more food from each acre — without chemicals and fertilizers — while reducing greenhouse gas emissions, increasing biodiversity, and enhancing the land’s ability to withstand the effects of climate change.

Livestock and their food needs take up 30 percent of land globally, according to the United Nations Food and Agriculture Organization. In Colombia, where cattle occupy 80 percent of agricultural area, pastures have contributed to soil degradation and deforestation and, in dry areas, have hastened desertification, according to Julián Chará, a researcher at the Center for Research in Sustainable Systems of Agriculture, CIPAV, in Cali, Colombia. But a new paradigm is emerging. Land conservation is happening alongside livestock production.

In Colombia, Molina’s brand of so-called “sustainable intensification” is the favored agroforestry practice for livestock production. Agroforestry cultivates trees with food crops or livestock, while farmers make use of the trees’ ecological benefits. Plantains grow above shade-loving coffee. Valuable hardwoods like oak grow in alleys next to corn and wheat.

“People don’t think of ranching when they think of agroforestry,” says David Cleary, strategy director for agriculture at The Nature Conservancy. “But what is happening in Colombia is a reminder that you have to have a broader definition of agroforestry and make it work with any number of agricultural systems. In Colombia, silvopastoral systems are favored because they can work for both smallholder farms as well as large, private-sector-style ranching.”

KEEP READING IN YALE 360